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WHITE PAPER:
INTERHARMONICS AND RMS VARIATION

Contributed by Landon Rhodes

INTRODUCTION

Interharmonics occur when a signal is present in a power  
system where the frequency is not an integer multiple of the 60 
Hz line frequency.  These can be generated from loads like  
variable speed drives, motors with non-constant torque, arc 
furnaces, power line communications, and renewable energy 
systems.  In addition to the effects shared with ordinary  
harmonic distortion, such as transformer overheating or  
equipment damage, interharmonics cause another serious 
problem, which is that RMS measurements will change within 
a cycle or from cycle to cycle.  This paper explains the math 
behind this time varying RMS effect. 

RMS EFFECTS

The root mean square (RMS) of some function h(t) is calculated 
over some interval T by

  

  

  

  

  

  

  

  

  

  

  

  

  

  

h̃ =
1

|T | ∫
T

h (t )2 d t

h̃

h (t ) =
N
∑
i=1

Ai ⋅ sin (mit + bi)

h̃ (x) =
1

|T |

x

∫
x−T

(
N

∑
i=1

Ai ⋅ sin (mit + bi))
2

d t

h̃ (x)2 =
N

∑
i=1

N

∑
j=1

Ai ⋅ Aj∫
x

x−1
sin (mit + bi) ⋅ sin (mjt + bj) d t

∫
x

x−1
sin (mit + bi) ⋅ sin (mjt + bj) d t

f (x , m , b) =
1
m

⋅ sin ( m
2 ) ⋅ cos (m (x − 1) + b)

cos(b)
2

sin ( m
2 )

cos(bdif f )

2 − f (x ,2m , bsum)

1
2 − f (x ,2m ,2b)

1
2

h̃

h̃ (x)2 =
N

∑
i, j=1

Apr o d ⋅ ( f (x , mdif f , bdif f ) − f (x , msum, bsum)

The normal average function is not all that useful of a  
measurement because any AC signal will average out to 0 over 
a cycle.  The RMS is a much more useful measurement because 
it is positive def inite and a voltage signal h(t) will deliver the 
exact same power to a resistive load over a time interval T as a 
DC signal at a level of 
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.  Suppose that h(t) can be expressed 
as sum of sine waves with various amplitudes, frequencies, and 
phase shifts, so that 
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This means that

Equation 1     
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We can clean this up a little bit by scaling everything so that  
T = 1 cycle of the fundamental 60 Hz line and rearranging the 
terms to get

The key to understanding what happens to the rms reading 
under various conditions is the innermost integral expression, 
which is the integral of the product of two arbitrary sine waves 
over a single cycle 

It is helpful to def ine a new function f(x, m, b) in terms of time 
variable x, frequency variable m and phase shift variable b that 
will f igure prominently in the evaluation of the integral.  Let 
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Another notation that will become useful is to write subscripts 
of sum, diff, and prod on variables to correspond to the sum, dif-
ference, and product of the corresponding i and j variables, so 
msum = mi + mj, mdiff = mi - mj and mprod = mi • mj.  Then, skipping 
a lot of algebra steps, the expression in Equation 3 is equivalent 
to 

Equation 5         f(x, mdiff, bdiff) - f(x, msum, bsum)

This formula is the main result and all the odd behavior in 
rms readings from interharmonics can be seen in this formula.  
Here are several important takeaways.

As the frequency m approaches 0 in equation 4, the expression 
for f approaches 
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.  

The expression for f is just a pure sine wave with frequency 
m.  Both the amplitude and the phase shift now depend on the 
input frequency, but there’s no change in shape or any weird 
distortion effects.

When the frequency is some harmonic multiple of 60 Hz, the 
expression  sin
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 in the def inition of f is exactly 0, so f = 0.

When the two input waves have different frequencies, then the 
result of this integral is one sine wave with a frequency of the 
difference of the two input frequencies and one sine wave with 
a frequency of the sum of the two input frequencies.  As an 
example, suppose there is some 25 Hz signal and some 40 Hz 
signal on the line.  Then, this integral will produce some 15 Hz 
effect and some 65 Hz effect.

When the two input waves have the same frequency m, then the 
result is 
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 which has a DC offset and a 2m 
sinusoidal component.

When the two input waves have the same frequency m and 
same phase shift b, then bdif f = 0 and the result is 
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When the two input waves have the same frequency m, the 
same phase shift b, and the frequency is an integer multiple of 
half the line frequency or 30 Hz, then the f(x, 2m, 2b) term in 
the previous note drops out and we are left with just 
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.

When the two input waves are both harmonics of the 60 Hz 
line, then both mdiff and msum are also 60 Hz harmonics and 
note 3 applies, so the whole expression becomes 0.
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Equation 2

Equation 3

Equation 4

https://www.powermonitors.com


© 2025 Power Monitors, Inc. • Call Us: (800) 296-4120 • www.powermonitors.comWP#384Page 2

WHITE PAPER:
INTERHARMONICS AND RMS VARIATION

Notice that the dependence on x drops out in the previous two 
notes, meaning that the 60Hz line and all of its harmonics only 
ever contribute DC components to the RMS calculation.   
Sampling at any point in the 60 Hz cycle and computing rms 
over the last cycle is exactly the same as starting at any other 
point in the cycle.  

Conversely, Interharmonic signals present with the 60 Hz line 
will cause variation in RMS measurement from cycle to cycle as 
well as within a cycle.

We can complete the calculation for rms by substituting the 
result of the integral into equation 2 and we see that given an 
input h(t) which can be represented by a sum of sine waves, the 
rms 
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 at a point x over the last cycle is given by 

Equation 6  

WORKED EXAMPLE

Suppose at some 120Vrms service, there is a 5% 3rd harmonic 
signal and an inverted 3% 5th harmonic signal, which is not 
uncommon especially in AC to DC conversion and it causes the 
peaks of the waveform to f latten out a little bit.  On this service 
connection, there is also some weird machine that injects a 
2% signal at 175 Hz.  Figure 1 shows a graph of this function, 
where the blue waveform shows 175 Hz distortion and red does 
not show the 175 Hz.  This example will work out the RMS of 
this curve at a point x over the last 60 Hz cycle from x.

Fig. 1 Red shows 60 Hz, 180 Hz, and 300 Hz signal, blue shows slight 
distortion from 175 Hz signal.

First write out the signal h(t) where t is in units of seconds.

Now, I will substitute this into Equation 6 and divide both sides 
by two factors of 120 to get

Now substituting all the f(x,0,0) terms with 
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+2 ⋅ 2 ⋅ 0.05 ⋅ 0.02 ⋅ f (x ,2π ⋅ 5,0) − 2 ⋅ 2 ⋅ 0.05 ⋅ 0.02 ⋅ f (x ,2π ⋅ 355)
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 and all the 
harmonics of 60 Hz to 0, we get
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+2 ⋅ 0.03 ⋅ 0.03 ⋅ f (x ,0,0) − 2 ⋅ 0.03 ⋅ 0.03 ⋅ f (x ,2π ⋅ 600,0)

−2 ⋅ 2 ⋅ 0.03 ⋅ 0.02 ⋅ f (x ,2π ⋅ 125,0) + 2 ⋅ 2 ⋅ 0.03 ⋅ 0.02 ⋅ f (x ,2π ⋅ 475,0)

+2 ⋅ 0.02 ⋅ 0.02 ⋅ f (x ,0,0) − 2 ⋅ 0.02 ⋅ 0.02 ⋅ f (x ,2π ⋅ 350,0)

1
2

( h̃ (x)
120 )

2

= 1 + 0.08 ⋅ f (x ,2π ⋅ 115,0)

−0.08 ⋅ f (x ,2π ⋅ 235,0) + 0.0025

+0.004 ⋅ f (x ,2π ⋅ 5,0) − 0.004 ⋅ f (x ,2π ⋅ 355)

+0.0009 − 0.0024 ⋅ f (x ,2π ⋅ 125,0)

+0.0024 ⋅ f (x ,2π ⋅ 475,0) + 0.0004 − 0.008 ⋅ f (x ,2π ⋅ 350,0)

Figure 2 shows a plot of this example.  Notice that there is a 
strong 5 Hz component of the signal and that it quickly  
oscillates between two 5 Hz sine wave boundaries.  This will 
very likely cause a serious problem with f licker.  There is a 
maximum of a 0.44% voltage drop on a 5 Hz basis. 

 
Fig. 2 RMS signal with 175 Hz, 180 Hz, and 300 Hz content on 
60 Hz line.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

h (t ) = 120 2(sin(2π ⋅ 60t ) + 0.05 sin(2π ⋅ 180t ) − 0.03 sin(2π ⋅ 300t ) + 0.02 sin(2π ⋅ 175t ))

( h̃ (x)
120 )

2

= 2 f (x ,0,0) − 2 f (x ,2π ⋅ 120,0)

−2 ⋅ 2 ⋅ 0.05 ⋅ f (x ,2π ⋅ 240,0) − 2 ⋅ 2 ⋅ 0.03 ⋅ f (x ,2π ⋅ 240,0)

+2 ⋅ 2 ⋅ 0.03 ⋅ f (x ,2π ⋅ 360,0) + 2 ⋅ 2 ⋅ 0.02 ⋅ f (x ,2π ⋅ 115,0)

−2 ⋅ 2 ⋅ 0.02 ⋅ f (x ,2π ⋅ 235,0) + 2 ⋅ 0.05 ⋅ 0.05 ⋅ f (x ,0,0)

−2 ⋅ 0.05 ⋅ 0.05 ⋅ f (x ,2π ⋅ 360,0) − 2 ⋅ 2 ⋅ 0.05 ⋅ 0.03 ⋅ f (x ,2π ⋅ 120,0)

+2 ⋅ 2 ⋅ 0.05 ⋅ 0.03 ⋅ f (x ,2π ⋅ 480,0) + 2 ⋅ 2 ⋅ 0.05 ⋅ 0.02 ⋅ f (x ,2π ⋅ 5,0)

−2 ⋅ 2 ⋅ 0.05 ⋅ 0.02 ⋅ f (x ,2π ⋅ 355) + 2 ⋅ 0.03 ⋅ 0.03 ⋅ f (x ,0,0)

−2 ⋅ 0.03 ⋅ 0.03 ⋅ f (x ,2π ⋅ 600,0) − 2 ⋅ 2 ⋅ 0.03 ⋅ 0.02 ⋅ f (x ,2π ⋅ 125,0)

+2 ⋅ 2 ⋅ 0.03 ⋅ 0.02 ⋅ f (x ,2π ⋅ 475,0) + 2 ⋅ 0.02 ⋅ 0.02 ⋅ f (x ,0,0)

−2 ⋅ 0.02 ⋅ 0.02 ⋅ f (x ,2π ⋅ 350,0)

1
2

( h̃ (x)
120 )

2

= 1

+0.08 ⋅ f (x ,2π ⋅ 115,0) − 0.08 ⋅ f (x ,2π ⋅ 235,0) + 0.0025

+0.004 ⋅ f (x ,2π ⋅ 5,0) − 0.004 ⋅ f (x ,2π ⋅ 355) + 0.0009

−0.0024 ⋅ f (x ,2π ⋅ 125,0) + 0.0024 ⋅ f (x ,2π ⋅ 475,0) + 0.0004

−0.008 ⋅ f (x ,2π ⋅ 350,0)

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

( h̃ (x)
120 )

2

= 2 f (x ,0,0) − 2 f (x ,2π ⋅ 120,0)

+2 ⋅ 2 ⋅ 0.05 ⋅ f (x ,2π ⋅ 120,0) − 2 ⋅ 2 ⋅ 0.05 ⋅ f (x ,2π ⋅ 240,0)

−2 ⋅ 2 ⋅ 0.03 ⋅ f (x ,2π ⋅ 240,0) + 2 ⋅ 2 ⋅ 0.03 ⋅ f (x ,2π ⋅ 360,0)

+2 ⋅ 2 ⋅ 0.02 ⋅ f (x ,2π ⋅ 115,0) − 2 ⋅ 2 ⋅ 0.02 ⋅ f (x ,2π ⋅ 235,0)

+2 ⋅ 0.05 ⋅ 0.05 ⋅ f (x ,0,0) − 2 ⋅ 0.05 ⋅ 0.05 ⋅ f (x ,2π ⋅ 360,0)

−2 ⋅ 2 ⋅ 0.05 ⋅ 0.03 ⋅ f (x ,2π ⋅ 120,0) + 2 ⋅ 2 ⋅ 0.05 ⋅ 0.03 ⋅ f (x ,2π ⋅ 480,0)

+2 ⋅ 2 ⋅ 0.05 ⋅ 0.02 ⋅ f (x ,2π ⋅ 5,0) − 2 ⋅ 2 ⋅ 0.05 ⋅ 0.02 ⋅ f (x ,2π ⋅ 355)

+2 ⋅ 0.03 ⋅ 0.03 ⋅ f (x ,0,0) − 2 ⋅ 0.03 ⋅ 0.03 ⋅ f (x ,2π ⋅ 600,0)

−2 ⋅ 2 ⋅ 0.03 ⋅ 0.02 ⋅ f (x ,2π ⋅ 125,0) + 2 ⋅ 2 ⋅ 0.03 ⋅ 0.02 ⋅ f (x ,2π ⋅ 475,0)

+2 ⋅ 0.02 ⋅ 0.02 ⋅ f (x ,0,0) − 2 ⋅ 0.02 ⋅ 0.02 ⋅ f (x ,2π ⋅ 350,0)

1
2

( h̃ (x)
120 )

2

= 1 + 0.08 ⋅ f (x ,2π ⋅ 115,0)

−0.08 ⋅ f (x ,2π ⋅ 235,0) + 0.0025

+0.004 ⋅ f (x ,2π ⋅ 5,0) − 0.004 ⋅ f (x ,2π ⋅ 355)

+0.0009 − 0.0024 ⋅ f (x ,2π ⋅ 125,0)

+0.0024 ⋅ f (x ,2π ⋅ 475,0) + 0.0004 − 0.008 ⋅ f (x ,2π ⋅ 350,0)

 ̃h (x)2 =
N

∑
i, j=1

Aprod ⋅ (f (x , mdif f , bdif f ) − f (x , msum, bsum))
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WHITE PAPER:
INTERHARMONICS AND RMS VARIATION

Figure 3 shows the IEEE 141 standard of Visibility and  
Irritability for f licker.  I have placed a red dot on the graph 
roughly where this example would be measured, which is inside 
the region of irritability.  Humans are incredibly susceptible to 
5Hz variations in light intensity and it does not take very much 
variation to become intolerable.  All of this oscillatory 
strangeness would disappear altogether if the 175 Hz injected 
signal were to be removed and the RMS graph would just  
become a horizontal line.

Fig. 3 Flicker tolerance curve from IEEE Std. 141

CONCLUSION

If a signal is decomposed into a sum of sine waves, then the 
RMS calculation involves a bunch of integrals of a product of 
two sine waves.  This integral yields two waves, one with the 
frequency of the difference of the two inputs and one with a 
frequency of the sum of the two.  With just a 60 Hz line and 
integer harmonics of the 60 Hz line, most everything cancels 
out nicely and the result is just a DC value. Interharmonics are 
different and this nice cancellation does not apply.  One major 
effect of this time varying aspect of the RMS calculation with 
interharmonic signals is light f licker.
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